Bertel Langenskiöld
Helsinki, Finland
President, Metso Paper and Fiber Technology
Aspects on Paper Machine Designs for the Future

The Marcus Wallenberg Prize Symposium
Stockholm, September 29, 2009

Bertel Langenskiöld
President, Metso Paper and Fiber Technology
World is changing
Does it affect the paper machine?

• Are design criteria changing due to new markets or new requirements?
• Will "good enough" paper quality and low costs be the drivers?
• Is it only the size that matters?
• What can be done to decrease the energy consumption or increase the energy efficiency?
• Will increasing scarcity of water have an effect to machine design?
• Do we see revolutionary development in paper making process?
Paper machine features in early 1970’s

• Speed 1000 m/min
• Width 8500 mm
• Efficiency 80-85%
• Production 125 000 t/a
A modern paper machine

- Speed 1800-2000 m/min
- Width 11000 mm
- Efficiency 90+%
- Production 350 000 t/a
Paper machine development since the 1970’s
Which technologies did it require to be possible?

• Air cushion h/b => hydraulic
• Fourdrinier => twin-wire former
• Three or four press nips => shoe press, single nip
• Introduction of zone controlled rolls with polymer roll covers
• Bottom and top felts => single tier dryer section with modern fabrics

• Automation and sensors
• Fluid dynamics
• Surface chemistry
• Polymers
• Ceramics
• Metallurgy
• Chemistry
Challenges drive development
Profitability main concern

• Low profitability limits new investments
 - Aging capacity in industrial countries
 - Yet, new capacity has cost and quality advantage

• High capital investment, yet a low margin commodity business
 - Business very vulnerable to capacity utilization ratio
 - High capacity targeted to minimize both capital and operation costs per ton produced
 ⇒ New investments create oversupply in the market, resulting in lower capacity utilization and prices for all producers when started up

• How to get out of this vicious circle?
 - New capacity to be combined with closure of outdated capacity in order to make sense.
Challenges drive development
Industrial logic favours efficiency

• Efficiency is still a driving force in industrial production, cost competitiveness drives decisions today

• Even in low labour cost countries the development has gone for big machines and high automation level

• Will this change? Is there an economic reason for another approach?
Will smaller entities have a new life?

- Same paper quality achievable regardless of the size
- Simpler and lighter designs can contribute in competitive investment cost per ton of production
- Advanced automation a must, but simplified design should contribute to economic solutions
- Possibility for stepwise growth through rebuilds and modifications
- Paper mill infrastructure and operation development
 - Simplified mill concept to support cost competitive operation
Challenges drive development
Environment a growing concern for all

• Environmental issues ever more important in decision making
 - energy, water, emissions, noise, raw material origin...

• A lot has already been done, but
 - image of industry is still poor
 - energy will become more expensive
 - fresh water threatens to become a scarce resource in many more areas
 - population grows and the mills are getting closer to residential areas

• Will scarcity and price of oil boost the use of fiber based packaging?
Importance of cost components

Average Cost Structures

BHKP (Global)
- Wood: 51%
- Personnel: 12%
- Energy: 10%
- Chemicals: 14%
- Other manufacturing costs: 13%

Newsprint (Global)
- Wood: 12%
- Chemical pulp / Other fibre: 4%
- Recycled paper: 17%
- Personnel: 17%
- Energy: 26%
- Chemicals: 6%

LWC (Global)
- Wood: 7%
- Recycled paper: 28%
- Chemicals: 12%
- Personnel: 17%
- Energy: 16%
- Chemical pulp / Other fibre: 21%

Copy paper (Europe)
- Recycled paper: 51%
- Personnel: 10%
- Energy: 10%
- Chemicals: 9%
- Other manufacturing costs: 19%

WLC (Europe)
- Recycled paper: 26%
- Personnel: 21%
- Chemicals: 15%
- Energy: 17%
- Chemical pulp / Other fibre: 3%

Testliner (Europe)
- Recycled paper: 28%
- Personnel: 16%
- Energy: 26%
- Chemicals: 12%

Market based pulp pricing also for integrated producers

Source: Sept. 29, 2009, Marcus Wallenberg Prize Symposium, Bertel Langenskiöld
Typical distribution of PM electricity use

- Approach system: 31%
- PM sectional drives: 18%
- Vacuum system: 16%
- Compressed air system: 10%
- Ventilation & runnability: 10%
- Hydraulic & lubrication: 10%
- Water system: 10%
- Finishing: 10%
- Broke system: 10%
- Other: 10%

Typical distribution of PM steam use

- Press section steam box: 15%
- Drying cylinders: 68%
- Water heating: 15%
- Ventilation: 5%
- Calander: 2%
- Other: 1%

Sept.29, 2009, Marcus Wallenberg Prize Symposium, Bertel Langenskiöld
Fresh water consumption of a paper mill

- FM showers: 28%
- Chemical preparation: 14%
- Sealing water: 35%
- Wash-ups: 14%
- Evaporation: 14%
Reduction of fresh water consumption

- Fresh water consumption decreased ~ 20 % in last 10 years
 - Efficient process water cleaning and closed process loops

- Chemical preparation, high pressure showers and wash-ups
 - Material development and designs to allow cleaner fabrics and machine with less water
 - Chemical preparation – process development to reduce the need of chemicals

- HC-forming
 - Forming technology development has increased headbox consistency from < 1 % to 1.3...1.4 % (especially in wood containing grades)
 - In HC forming (~ 3 %) fresh water consumption not affected due to recirculation of wire waters

- More efficient cleaning of effluent water
 - Use of ultrafiltration and nanofiltration technologies
 - Zero effluent technically possible with reverse osmosis and evaporation processes but has not been economically feasible so far
Wanted features of a future paper machine

• Simple and cost efficient process and machine design
 - On-line processes, single nip press, simple stock prep
 - Flexibility, easily modified for grade change or increased capacity

• High usability and uptime
 - New embedded service concepts, simple technical solutions, new materials, use of automation to monitor machine performance and condition
 - Cleanliness, quick grade changes, maintenance friendly

• Reduced energy consumption
 - Former without vacuum, efficient pressing
 - Solutions depend on the choice of energy source at the mill

• Efficient use of fresh water
 - Develop water reuse even further
Summary conclusions

- No viable alternatives for fiber-water suspension can be foreseen in paper making
- Cost structure and environmental issues will be key drivers
- Most likely development takes place in small evolutionary steps
- Cost structure in paper making has supported big entities
- If cost structure changes, e.g. due to increased energy price, some grades might have a new situation
- It would be optimal to be able to invest in suitable size, not only giant
 - New technical solutions need to be developed to allow competitive investment and operating cost